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Abstract
We explain the difference of the Hilbert space of the superconformal ghosts (8, ) system
from that of its bosonized fields @ and x. We calculate the chiral correlation functions of ¢,
x fields by inserting appropriate projectors.

Recently, many authors have investigated the bosonization ~f superconformal ghosts f and 7" 2. Unlike
the fermionic ghosts b and ¢, the bosonization of (B, 7) system have some problems.

Locally, (B,7) system is equivalent to two scalar fields @ and x°. Although the chiral correlation funcﬁons
of B, 7 filds have been calculated” 2 the calculation of the chiral correlation functions of @, x fields will be
troublesome. Besides the redundant zero —modes of the bosonized fields, the main reason is that ¢ , X fields
have a large Hilbert space‘ than (B, 7) system. In ref. (4), this enlargement was explained as caused by the
freedom of choosing the background ghost charge, the so—called picture, and by introducing ﬁrojectors which
specify the picture of each loop, the Hilbert space of @, x fields are restricted to the degrees of freedom of
the (B, ) system. In this paper, we explain this problem from an elementary point of view, and then apply

new projector for the calculation of the chiral correlation functions of ¢, x fields.

We consider the (B, ) system corresponding to superstring theory, i. e. with conformal dimensions % ,

- % respectively. Locally, (B, 7) system is identified with a scalar field @ and a pair of fermions {,# with

conformal weights 0, 1 respectively.

p=ole™ y=ne* (1)
The ¢ field is coupled to background charge Q=2, and is described by the action
1 i
S[e)= 57 [d2(~8,20,9~ 5 V& Ro) (2)

where, 8,7is a Riemann metric and R is the corresponding scalar curvature. We can again bosonizing ({, n)
system via another scalar field x

{=¢* n=e ¥ (3)
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The x field is coupled to background charge Q= —1 and is described by the action

-
s[x]=71n—jdzz( o xa X+ Ve RO )
; z

@ and x fields are both restricted to taking values on a unit circle R/2ng ; this compactification

results soliton configurations on Riemann surface y, with genus g>0, and insures the necessary
holomorphic factorization® .

The classical soliton sectors can be labeled by the winding numbers for the canonical homology
basis (a;, b) . The soliton solutions of @, x fields with winding numbers (n, b) are given by

Pom(Z) =7 (m +'_z:n)(Im‘r)—lz +c.c-

- (5)
Xam(z) =in(m+7n)(Imrt) : z+c.c.

where T is the period matrix of } s . For simplicity, we have denoted the Jacobi map f:w as z.

0
The corresponding action

S[® ] = %—(mﬁn )(Imr)—l( m+ tn)+2S,

n -1

S[xm]=7(m+?n)(lmr) — S, (6)

Sy=7(m + 7n)(Im7) —IA —c-C-

where, /A is Riemann class .

We consider the following correlation functions
s{o. ¢ n>l 2 L iqe@z)
—8o.L, 2.
A5=j[d<pdcc1n]5e "] I cx) [Incyw nle‘L ™
a= = c=

where g, are integer satisfying q.=2(8 —1), and d is a specific spin structure .
If ¢ and x are treated independently, the result will be different from that of the corresponding B,
y fields . We notice that '

a) the bosonized fields have redundant zero — modes of { and 7 fields .

and b) the (@, x) system has a larger Hilbert space than that of the (B, y) system, since ¢ and
X are not independent globally . Thus we must have appropriate constriants, otherwise, some global

configurations will be computed repeatly . .
The first aspect can be resolved by inserting operators 0({(x)), []é(7n(r)) to remove zero—
1=1
modes of {, 7 fields.# has zro—modes at i=1, -, g and { has a constant zero—mode, thus

X is an arbitrary point on ¥, . In order to avoid to compute thesimilar part of global configurations
of ¢, x fields, we introduce projector
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d(my—my)6(ny,—ngy (8)

to restrict @, ¥ on the same soliton sector at the same time .

Now, according to Riemann—Roch theorem, (7) must be modified as follow
eicho ()
1

n n n
A5=f[d<pd5dn ]ée'”“"c'"]agc(xa)blelﬂ(Yb)cfl (9)

Inserting our projector

g
s(C(xN [] d(M(ri))é(me—m,) §(Ny—Ng)
i=1

we have

n n .- g
As= (L1 T I 502001501 (r) dtmy=m ) s(nr=n e,

i=1

For the & —functions with fermion arguments,5({)={, (1) =5, and labelling the arbitrary X as X

we get
n+l . ; n g _;
w(x) B —ix(y,) i0.0(z,) ix(r)
As=<C]] € ﬂe T T]€ ( []€ ‘5(mx-—m¢)5(nx—n¢)>5

a=1 b=1 c=1 i=1

This result can be written as a soliton sum A ;. 5 multiplied the amplitude of zero soliton sector Aq

As=Agl s+ Ay (10)

Ay, is the result of the single—valued part of @, x fields. It is trivial that’

Agp=exp{2im( ¥ X ,~ LYy, —XT; + ¥ dcZc™ A)(Imfsllm(zxa—ZYb

UU( z) % Da( yp)[ 10 ()
[1E @, %)** [o(x)

¢ <¢,

-Yh+ %92z - A)}X

4,<q, b,<b,

[1E (X g,9X3) l—[bE (Yb,9Yb,)n E (L ,I) bl—l E (yp,1;)
T < <r; (11)

HE (XasYp) n E( xa9ri)
a, b a r;
Using Possion summation formula, we get-
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. A;ol, 4 = (detImT)exp{ - 27tIm ( le—ZYb + chlc—zri —A)(Imt)_l * Im (ZX,— Zyb

+592,—% r—A)}- I%exp{nip,rpﬁ 27ip, (Ix,~ Ly,~Zr, +A)}

z

- |Zexp{ —=7i(P, + 6 )t(p, + ) + 27i(p, + O)(£q.z,—2A+5)} 12)
P

®
Here, 9, 6'6(—;- z/z)*, and 5=[g.']

From (11) and (12), holomorphic anomaly factors of Ay, and A, , can cancell each other. Thus we can

have chiral .correlation functions

n

0[6] (—Ybo +2X-2Yy, t2q.2,-24)
=1

&

A = (detImt) T

n+l

[1610] (=, + Ex~Xy,+ 3q.z.—24)

2=1

[TEG X )T TEG, ¥s)

a; <a, b,<b,

. (13)
qE(L,yb) [[E@, z)=% [[o@z)™

Cp, C c

Thus, by inserting appropriate projector to remove the zero — modes of {, 7 fields and restrict @, X on the
same soliton sector, we get the correct chiral correlation functions of @, x fields. As compared with ref. (4), our

approach is more comprehensive.
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